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Abstract. We introduce geometrical indicators (Frenet–Serret curvature and torsion) together
with microcanonical density to give evidence to the stochastic transition of classical Hamiltonian
models (Fermi–Pasta–Ulam and Lennard–Jones systems) when the specific energy grows.
The transition is clearly detected through the breakdown of the harmonic-like behaviour, in
combination with the vanishing of the dependence on the initial conditions. This method of
analysis presents both experimental and theoretical advantages: it is fast and gives relatively
sharp answers for the transition; moreover, a new insight is allowed on the deformations and
the destruction of invariant surfaces in the ordered regime. Among the results, it is noteworthy
that going from 32 to 4096 degrees of freedom the stochastic transition depends only on the
specific energy and not on the number of degrees of freedom.

1. Introduction

To detect the transition from an ordered to a chaotic regime of motion, dynamical observables
sensitive to the different features of trajectories are required. The evaluation of the Lyapunov
exponents, for example, is a direct method, based on the uncorrelation rate of nearby starting
orbits [1]. Being related to Kolmogorov entropy, Lyapunov exponents admit a precise
interpretation in terms of statistical properties. We note however that their computation
requires a double integration of the equations of motion and that, moreover, ‘null’ Lyapunov
exponents do not appear as such in numerical simulations. Other (non-direct) methods are
the equipartition based criteria, which exploit the statistical consequences of disorder. Some
critical features of the latters, with a special reference to the stochastic regime of motion
and to the thermodynamic limit, are discussed in [2, 3]. (See also [4] and [5] for recent
results on the relations between time scales and number of degrees of freedom for transition
criteria based on equipartition.) In both cases, Lyapunov and equipartition based indicators,
the crossover between ordered and disordered regions is sometimes difficult to appreciate,
because of the long time scales in the approach to equilibrium.

The main practical advantage of the method introduced here is that such a crossover is
particularly neat and fast to estimate. In fact the scanning in the order parameter (say, the
energy) does not require, as is usual with other indicators, a particularly good relaxation.
Actually, our indicators are based on observables, both ‘geometrical’ (curvature, torsion) and
dynamical (microcanonical density), which show a sharp breakdown of quasi-harmonicity.
Such a breakdown, sufficient to distinguish two regimes of motion, occurs very early in time
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and is extremely stable. After localization of the critical value of the order parameter, a few
experiments are sufficient to test the possible vanishing dependence on the initial conditions,
as suggested by the Birkhoff theorem, in order to establish a connection between the quasi-
harmonicity breakdown and the onset of stochasticity. Of course, those few checks require,
in general, the long relaxation times already known through other methods.

The features we are interested in (i.e. stochasticity or quasi-integrability) are intrinsic
of the system and do not depend on the coordinates. On the other hand, the indicators may
be different for different coordinate systems, since they are only required to be effective
in emphasizing what we are looking for. Therefore, it is totally irrelevant that observables
such as curvature or torsion are not canonically invariant. The same happens, for example,
for equipartition based criteria, where normal modes are not interchangeable with arbitrary
coordinates.

On the background, there is the possible link between the ‘geometry of order and chaos’,
as suggested by the KAM theory, and the properties of the trajectories. The stochastic
transition, whose very definition is far from being clear and universal, is involved in such
an analysis in a natural way, to the extent that it gives a plausible picture of the invariant
surface deformation process in the ordered region. In other terms, since the transition from
quasi-integrability to chaoticty is characterized by the progressive vanishing of invariant
surfaces, which act as local geometrical constraints, the present approach gives direct insight
into the structural features of the dynamical system.

To avoid any misunderstanding, we recall that there is a widely shared opinion (see
[6] and references therein) about the persistence of stochasticity even at very low energy,
with the following features: a diffusion motion which takes exponentially longer and
longer times to reach the equilibrium, and the practical disappearance, at growingN ,
of quasi-integrability in the strict KAM sense. According to this opinion the onset of
stochasticity discussed throughout the present paper has to be recognized as the ‘strong
stochastic transition’ (SST), i.e. the transition from weak to strong stochasticity, and not
from quasi-integrability to stochasticity. We do not discuss this point here: when speaking
of ordered and disordered regions we keep a phenomenological attitude, by distinguishing
(if possible) only the qualitative behaviour of the systems. Thus, below threshold, the
quasi-harmonicity (i.e. time averages keeping the values of the harmonic system with the
same initial conditions) is compatible, in principle, with both the possibilities: the weak
stochasticity quoted above and the quasi-integrability in the KAM sense. We assume the
last conceptual frame because it suits the existence of local geometrical constraints, strongly
supported by our simulations. It is only in this sense, and not in relation to the rigorous
methods of the classical perturbation theory, that we use terms like ‘ordered motion’ and
‘quasi-integrability’.

Tentative experiments, based on the Frenet–Serret curvature along the orbit and
microcanonical density, partially developed these ideas in [7]. The main goal there was
to compare the behaviour of indicators based on the previous quantities with the rate of
energy exchanges, in order to give evidence to trapping phenomena in the weakly stochastic
domain. Returning to this item here, we exploit computational improvements, a better choice
and definition of the geometrical observables, and a clearer understanding of their relation
with the structure of the ordered region.

The main result is the particularly clear evidence that the quasi-harmonic, anharmonic
or stochastic behaviours depend on the specific energy only, and consequently that the
thresholds are independent ofN . This fact constitutes a strong indication on the persistence
of ordered motion in the thermodynamic limit.

An alternative geometrical approach to the same problems has been developed in a
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series of papers [8–10] using concepts and tools taken from the Riemannian geometry of
manifolds. They explore proper sources of stochasticity, such as the existence of subdomains
with negative curvature, and the parametric resonance induced by fluctuations of Ricci
curvature, independently of negativeness. This approach proves very fruitful, leading to a
rich set of results which, as far as they can be matched, are in excellent agreement with
ours, in particular with those referring to the thermodynamic limit.

The connections between these two geometrical methods seem possible, in principle,
but hard to establish. Each of them presents some advantage with respect to the other, with
a certain degree of complementarity. Generally speaking, the very nature (or existence) of
weak chaos could be involved, but direct comparisons are difficult even on the grounds of
numerical simulations. For the moment, besides the particular simplicity of the mathematical
apparatus required by our method, we stress the advantage of easy insight into phase space,
whose geometrical structure below threshold is naturally inspected by our observables.
Moreover, even with respect to the other geometrical approach, we claim the convenience
of dealing with the quasi-harmonicity phenomenon, which requires in principle shorter times
of relaxation. However, we lack explicit comparisons.

Numerical simulations regard the classical Fermi–Pasta–Ulam (FPU) and Lennard–Jones
(LJ) models, with suitable variations (e.g. of the boundary conditions) to study the role and
the influence of various parameters. The Toda model is also considered for comparison with
an integrable system: for this model too, a transition from quasi-harmonic to non-harmonic
behaviour may be easily established. In this case, however, a stable dependence on initial
conditions holds for all the values of the parameters below and above this threshold which,
therefore, does not indicate any stochastic transition.

2. Geometric features of trajectories in phase space

In the standard terminology of curves inR3, where the tangent versort, the principal normal
n and the binormalb are well defined quantities, the Frenet–Serret (FS) formulae are:

dt

ds
= κn

dn

ds
= −κt + τb

db

ds
= −τn. (1)

The variation of the tangent versor defines the first curvatureκ (or ‘curvature’ tout court).
This quantity represents the inverse radius of the osculating circle in the plane (t, n), and
it is positive definite. The component of the variations of the reference versors of the
osculating plane outside the plane itself, i.e. the vectorτb as read in the second FS formula,
defines the second curvatureτ (or ‘torsion’), which is not a positive definite quantity. Note
that the third formula also defines the torsion, via the variation of the binormal.

Going from R3 to RN [11] the first two equations do not change. Therefore, these
can be used to directly define curvature and torsion for curves inRN , whereas the third
equation requires a generalization that includes a third curvature (actually, the number of
equations rises toN , with N − 1 curvatures).

The curves we consider are trajectories in the 2N -dimensional phase space of a classical
Hamiltonian system, withN degrees of freedom and homogeneous canonical coordinates
(p, q). With these variables the infinitesimal arc of trajectory is given by

ds =
( N∑

i=1

(dp2
i + dq2

i )

)1/2

and the tangent versor by

t = {dp1/ds, . . . , dpN/ds, dq1/ds, . . . , dqN/ds}.
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Note that in the harmonic case the energy of thekth oscillator isEk = 1
2ωk(p

2
k + q2

k ), so
that the harmonic torus is the product of exact circles, whose curvatures are constants of
motion depending on the distribution of energies among the normal modes. The explicit
formula for the harmonic curvature is given in section 3.

For every quantityf , the objects of actual computations are time averages and variances
along the orbit up to the timeT , i.e.

〈f 〉 = 1

T

∫ T

0
f (p(t), q(t)) dt Var(f ) = 〈f 2〉 − 〈f 〉2

〈f 〉2
. (2)

For simplicity we omit theT dependence.
The variances give an estimate of the dispersion around the mean value. They are

identically 0 for harmonic oscillators, but meaningful, in principle, for anharmonic systems.
We use the following geometrical quantities:
• the curvature, as defined through the first equation in (1),
• the absolute value of torsion, as defined through the second equation in (1),
• the absolute value of the derivative of curvature and torsion.

From the combined analysis of averaged values and variances of these, one can draw non-
trivial consequences about the invariant surfaces deformation.

Besides the geometrical quantities, we also make use of the microcanonical density

ρ = 1

|∇H(p, q)| = 1

|v| = dt

ds
(3)

which is a well defined observable, independent of the ergodicity of the system. It has the
meaning of ‘sojourn time’.

In the harmonic case, all the three quantitiesρ, κ and τ are constant of motion and
proportional toE−1/2, as deduced from the explicit expression (see section 3). Therefore,
in order to give more evidence to the departure from the harmonic behaviour, we also plot
‘normalized quantities’:

〈ρ〉n = A
〈ρ〉

E−1/2
(4)

with the numerical factorA chosen for graphical convenience, and

〈κ〉n = 〈κ〉
〈ρ〉 〈|τ |〉n = 〈|τ |〉

〈ρ〉 . (5)

This last normalization through the microcanonical density is justified by two facts: first,
in the quasi-harmonic regime it gives the same effect as the normalization throughE−1/2;
second, in the anharmonic regime, the energy surface becomes more complicated than the
harmonic surface at the same energy, which implies, on one side, a relative increase of the
mean curvature and torsion and, on the other side, a relative reduction of the mean density,
i.e. of the microcanonical density. Therefore, this normalization is expected to amplify the
anharmonic deviation of averaged curvature and torsion.

3. Models

The harmonic Lagrangian, with periodic boundary conditions (x1 ≡ xN+1), is

L0(x) = K − χV2 = 1

2

N∑
i=1

ẋ2
i − χ

2

N∑
i=1

(xi − xi+1)
2. (6)
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The diagonalization is obtained in the standard canonical coordinates{p̂, q̂} correlated to
Lagrangian coordinates{ẋ, x} by ẋ = Bp̂, x = Bq̂, with the unitary matrixB = {βi,k}
given by 

βi,k =
√

2

N
Ck cos

(2(k − 1)iπ)

N
k = 1, . . . , M

βi,k =
√

2

N
Ck sin

(2(N − k + 1)iπ)

N
k = M + 1, . . . , N

(7)

with M = [N/2] + 1, where [N/2] is the integer part ofN/2. The resulting harmonic
spectrum is twofold degenerate:

ωk = 2
√

χ sin
((k − 1)π)

N
. (8)

With fixed boundary conditions, (x0 ≡ xN+1 = 0), the second sum in the Lagrangian
(6) starts fromi = 0, while the matrixB reads

βi,k =
√

2

N + 1
sin

ikπ

N + 1
(9)

and the harmonic spectrum is non-degenerate:

ωk = 2
√

χ sin
kπ

2(N + 1)
. (10)

By introducing the homogeneous coordinates

pk = p̂k/
√

ωk qk = q̂k

√
ωk

in both cases the harmonic Hamiltonian reads

H0(p, q) = 1
2

N∑
k=1

ωk(p
2
k + q2

k ) =
N∑

k=1

Ek =
N∑

k=1

ωkJk (11)

whereEk are the harmonic energies andJk the action variables. With periodic boundary
conditions,ω1 = 0 andJ1 is not defined. The missing degree of freedom corresponds in
this case to the translational invariance of the Hamiltonian.

In the harmonic model, microcanonical density, curvature and torsion assume the
following explicit form:

ρ =
(

2
∑

k

ωkEk

)−1/2

κ = ρ2

(
2

∑
k

ω3
kEk

)1/2

|τ | = ρ2

(
2

∑
k

ωk(ω
2
kρ/κ − κ/ρ)Ek

)1/2

.

(12)

For largeN , these quantities can be easily estimated: as for theρ, for example, if the
harmonic energiesEk (constants of motion) are independent of the frequenciesωk:

1

N

∑
k

ωkEk ≈ 1

N

∑
k

ωk

1

N

∑
k

Ek

i.e. the average of the product is approximately equal to the product of the averages. This
occurs, for example, with uniform or random distributions{Ek}. In our models, with the
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harmonic spectrum (8) and (10), the mean value of theωk rapidly tends to a limit valuēω,
independent ofN , so that

ρ ≈ E−1/2(2ω̄)−1/2.

In the general case, this expression is multiplied by a correlation factor which depends only
on the shapes of the two distributions{Ek} and {ωk}. Similar estimates and considerations
apply to κ and |τ |, so that we may summarize the following properties of the quantities
(12):

• they behave asE−1/2;
• harmonic energy distributions independent of the spectrum give the same value for

them;
• when normalized throughE−1/2, they depend only on the correlation between the

harmonic energies and the spectrum;
• when normalized as before, they are not affected by the linear rescaling of the harmonic

energies, even in case of correlation.
As for the anharmonic HamiltoniansH = H0 + V ′, we consider the quartic Fermi–

Pasta–Ulam model with periodic boundary conditions, and the Lennard–Jones model with
fixed boundary conditions. The FPU system is characterized by the anharmonic potential

εV4(x) = ε

4

N∑
i=1

(xi − xi+1)
4 (x1 = xN+1) (13)

while the global potential (including the quadratic part) of the LJ system is

VLJ = 4ε̂

N∑
i=0

[(
σ

xi − xi+1 + xeq

)12

−
(

σ

xi − xi+1 + xeq

)6
]

+ (N + 1)ε

(x0 = xN+1 = 0). (14)

In the last formulaxeq = 21/6σ is the minimum of the potential well, and the{xi} are the
deviations from the equilibrium positionsi ·xeq of the ith particle. A power series expansion
gives the quadratic potential as in (6) withχ = 9 · 28/3ε̂/σ 2.

For comparisons with previous experiments, the parameters have been taken at the
following fixed values:ε = 0.1 andχ = 1 in FPU, ε̂ = 27.5 andσ = 1 in LJ. We shall
see that with these parameters the thresholds are localized at close values of the specific
energyu for both systems.

We shall examine also systems obtained by varying some conditions. For instance, the
quartic FPU model with fixed boundaries, or the FPU model including also the third-order
potential

V3 = η

N∑
i=0

(xi − xi+1)
3 (15)

with η ranging from 0 up to the value ofε, i.e. 0.1.
Finally, for comparison with an integrable model, we shall consider the Toda chain

whose potential is

V
T

= α

N∑
i=0

(e−β(xi−xi+1) + γ (xi − xi+1)). (16)

whereβ = −2−1/6, γ = eβ andα = 3.76. These values forβ andγ are obtained by fixing
position and value of the minimum as forVLJ , while α has been chosen in order to localize
the onset of anharmonicity approximately at the same value ofu as in the other models.
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4. Numerical experiments and results

Experiments have been performed by varying the numberN of degrees of freedom from
32 to 4096. As usual, for comparisons at differentN , we study our variables as functions
of the specific energyu = E/N , from 10−4 to 30, with several checks below and above
this range. The integration routine (a standard fifth order Runge–Kutta) required integration
steps different for the FPU and the LJ systems, and different at different energies. The step
sizes were always chosen to ensure a very good energy conservation (one part over 107 in
the worst case).

The typical total elongation of the trajectories was given by 600 of the shortest harmonic
periods, and the samplings for the averages by 4000 instantaneous values. Several checks
up to 2400 periods have been performed. Experiments on the time behaviour, in order to
examine the dependence on the initial conditions, reached 16 000 periods.

The initial conditions have been chosen randomly for the variables{x, ẋ} or {p̂, q̂}.
This means that the initial harmonic energiesEk were slightly correlated to the frequencies
ωk, so that the quantities (12) in the harmonic model were also slightly dependent on the
initial conditions, even at very highN . The actual choice, ‘democratic’ but sufficient to
give evidence to the role of the initial conditions, requires some care in order to compare
the anharmonic experiments at different energies: specifically, the initial{Ek} distribution
must keep constant the reference harmonic case. Therefore, the correct way to increase the
specific energy is obtained by assuming the same random choice for{p̂, q̂} (or {x, ẋ}), with
a linear scaling of the harmonic energiesEk through the scaling of the coordinates. This
corresponds to follow a ‘radius’ in the phase space, i.e. to cross the different constant energy
surfaces along a fixed direction. Several experiments have been performed by following
different radii.

First, we distinguish the results referring to time averages from those referring to their
variances.

4.1. Time averages

For simplicity we shall use for them the symbolsρ, κ, τ andρn, κn, τn.

4.1.1. FPU. The plots forρ, κ andτ are reported in figure 1. At low energies they all keep
approximately the same values as in the harmonic system with the same initial conditions.
Due to the log–log scale, a certain care is required forκ and ρ in order to grasp where
the deviations from the harmonic behaviour (slope− 1

2) start. It is clear, anyway, thatρ
deviates to a steeper slope whereasκ andτ deviate to an easier one. This fact stresses the
advantage of normalizing curvature and torsion by the microcanonical density, as in (5).

Figure 2 shows the normalized quantities obtained by following five different radii in
the phase space. The factorA = 2 in the normalization (4) has been chosen just to avoid the
overlapping ofρn andτn. As expected, all the plotted quantities exhibit a sharper behaviour
than those of figure 1. For every fixed radius, the dependence onu below the transition
can be directly related to the quasi-harmonicity of the system, in the sense that the mean
values are almost exactly the harmonic values, while at high energy such a correspondence
disappears. The dependence on the initial conditions is clearly displayed for low energy,
while at high energy the five lines become undistinguishable. Such a behaviour may be
directly read in terms of the Birkhoff theorem: the vanishing dependence on the initial
conditions characterizes the transition interval around a threshold specific energyũ as the
transition from nonergodic to ergodic regime of motion. Figures 3 and 4 show, for instance,
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Figure 1. Plots of time averagedκ, τ andρ versusu, for the FPU model withN = 512. Total
integration time corresponds to 600 of the shortest harmonic periods. The averages run over
4000 instantaneous values.

Figure 2. Plots of time averagedκn, τn andρn versusu, for initial conditions along five different
radii in the FPU model. Other parameters are as in figure 1.

the time dependence ofκn below and above threshold for four initial conditions. Actually,
the latter are chosen differently from those in the previous figure to give better evidence of
the spread of values.

The observablesρn andκn retain the harmonic value upu = 0.1, andτn up tou = 0.03.
This small difference will be regularly noted in all the experiments. The threshold specific
energyũ defined by these values is within the estimates obtained through other stochastic
parameters and criteria, such as equipartition, spectral entropy and Lyapunov exponents. We
remark on the definiteness of the left bounds of transition interval in figure 2. Furthermore,
the stability of these bounds is reached early in time, i.e. within 600 of the shortest periods,
which usually are not sufficient with other approaches to get similar reliability. Checks
up to 2400 periods have been performed. From a general point of view, this could imply
that the quasi-harmonic (respectively, non-harmonic) features of the trajectories are nearly
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Figure 3. Time behaviour of the averagedκn for four initial conditions below the harmonicity
threshold (u = 0.01) in the FPU model. The final time corresponds to 600 of the shortest
harmonic periods.

Figure 4. Time behaviour of the averagedκn for four initial conditions (the same as in figure 3,
rescaled) above the harmonicity threshold (u = 30) in the FPU model. Final time as in figure 3.

steady properties all over the evolution, so that they may be immediately estimated without
long relaxation times.

4.1.2. LJ. Qualitatively, nothing changes with respect to FPU, at least for the stochastic
transition. We only mention a certain numerical instability of the results at high energy.
Figure 5 shows the analogous figure 2 for a single radius in the phase space. The factor
A = 1000 in the normalization (4) forρn has been chosen to obtain the same order of
magnitude as forκn andτn. We omit to reproduce figures corresponding to figures 3 and 4
since they are equivalent apart from the time scale: the LJ model seems indeed to be much
slower in the approach to equilibrium. However, the time required to establish the stable
bounds inu as given by figure 5 is the same as for FPU.
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Figure 5. Plots ofκn, τn andρn, corresponding to those of figure 2, for a single radius, in the
LJ model. Degrees of freedom and calculation parameters as in figure 1.

4.1.3. For a comparison with an integrable model, we also examine the Toda chain (see
equation (16)). By choosing the parameters as in section 3, the plots corresponding for
instance to those in figure 2 exhibit a similar transition to non harmonic behaviour at the
same specific energy. However, as shown for the curvature in figure 7, the diagrams for
different radii remain distinguishable also above the transition. As expected, below and
above this non-harmonicity threshold the time plots (that we omit) are similar, and both are
similar to those in figure 3: in other terms, at all energies there is a time stable dependence
on the initial conditions.

4.2. Variances

4.2.1. FPU. As said before, in most cases the variances ofκ, τ andρ have been calculated
over 4000 instantaneous values along the orbit, a number that is still not sufficient for good
stabilization in the stochastic regime, but it is largely sufficient to localize a transition. This
transition, which individuates the same interval inu previously observed in figures 1 and 2,
consists in a neat breakdown of the linear growth, with slope very close to 2, in the log–log
diagrams (see figure 6). Differently from the case of mean values, a direct comparison with
the harmonic value (identically 0) is meaningless.

4.2.2. LJ system. The stability is in general worse than in the FPU case, especially at high
energy, inasmuch as the indication of the transition. However, a good estimate of the slope
in the ordered region is still possible, and gives a value close to 1 (figure 8).

4.3. Dependence onN

With N from 32 to 4096, the transition specific energyũ shows remarkable stability, for
both FPU and LJ systems. Figure 9, forN = 4096, overlaps figure 1, forN = 512, apart
from a shift down, while figure 10, referring to normalized quantities, is practically identical
to figure 2 over the full range of specific energy. By recalling thatρn is normalized with
E−1/2 = u−1/2N−1/2, andκn andτn are normalized withρ, this overlapping shows thatρ,
κ andτ depend onN only through the factorized functionN−1/2. Below threshold, this is
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Figure 6. Plots of κn versusu with initial conditions along four radii for the Toda model.
Degrees of freedom and other parameters as in figure 1.

Figure 7. Variances computed along the same orbits as in figure 1, in the FPU model forκ, τ

andρ versusu.

simply related to the quasi-harmonic behaviourE−1/2 already observed after (12), whereas
it represents a new result above threshold.

Also the variances are shifted down asN increases, but a similar procedure of
normalization is not simply transferrable, because of the nonlinearity of the variance itself.

4.4. Main differences and comparisons

Thus the main difference between the two models consists in the slope of the variances in the
quasi-harmonic regime, which behave asu2 andu in the FPU and LJ systems, respectively.
Actually, another difference between the two models has been found in the experiments.
We have evaluated the averaged absolute derivatives, obtaining the same results for the
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Figure 8. Variances corresponding to those of figure 7 for the LJ model. Values at high energies
are not completely reliable.

Figure 9. Plots corresponding to those of figure 1 forN = 4096. Note the vertical shift of the
figure, and the overlapping of the transition interval.

three observablesρ, κ andτ , i.e.〈∣∣∣∣df

dt

∣∣∣∣〉 ∝ u1/2

〈∣∣∣∣df

dt

∣∣∣∣〉 ∝ constant (17)

for FPU and LJ systems, respectively.
From the behaviours of variances and derivatives, it is possible to draw some

phenomenological consequences on the geometrical structure of the phase space. Let us
first introduce the amplitude1f of the fluctuation for every computed observablef , by
using the definition (2):

1f ≡
√

〈f 2〉 − 〈f 〉2 = 〈f 〉
√

Var(f ). (18)
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Figure 10. Plots corresponding to those of figure 2 forN = 4096, for a single radius. Note
again the perfect overlap of the figure without any vertical shift.

Remembering that, for both systems, the averaged observables decrease asu−1/2, from the
behaviours of the variances we obtain

1f ∝ u1/2 1f ∝ constant (19)

for FPU and LJ systems, respectively.
We may now introduce a ‘frequency’ for the observablef through the formula

ν(f ) ≈ 〈|df/dt |〉
41f

. (20)

For a regularly oscillating phenomenon, expression (20) would represent the proper
frequency. Therefore, in our case, this definition is a reasonable one on the basis of
the usual assumption, i.e. that in the ordered regime of motion the trajectories oscillate
almost regularly, in the mean, around their harmonic counterparts at the same energy. This
assumption, besides its general consistency with our results, has been well confirmed by
direct checks.

Therefore, from (17), (19) and (20) we obtain

〈ν(f )〉 ∝ constant (21)

for both the systems in the whole ordered range. The same quantity multiplied byρ, the
mean of the inverse absolute velocity (see (3)), represents the mean wave number〈n(f )〉,
with the following dependence onu:

〈n(f )〉 ∝ u−1/2. (22)

These considerations, summarized in table 1, provide information about the way in which
the phase point moves on the deformed invariant surface.

4.5. Further checks on other systems

A series of checks have proven that the boundary conditions have no influence, and
that the qualitative differences between FPU and LJ systems exclusively depend on the
presence/absence of the third-order term in the Hamiltonian. More precisely, this means
that including the cubic interaction (15) with coefficientη in the FPU model, the variances
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Table 1. Behaviour versusu, in the ordered regime, of different quantities related to three
observablesρ, κ andτ (indicated asf ).

FPU LJ

〈f 〉 ∝ u−1/2 ∝ u−1/2

Var(f ) ∝ u2 ∝ u

1(f ) ∝ u/2 ∝ constant
〈|df /dt |〉 ∝ u1/2 ∝ constant
〈ν(f )〉 ∝ constant ∝ constant
〈n(f )〉 ∝ u−1/2 ∝ u−1/2

Figure 11. Plots of the variances, corresponding to those of figures 7 and 8, for the modified
FPU model including a cubic interaction with a coefficientη = 0.01 giving evidence to the
transition from the slope 1 to the slope 2.

and the time derivatives undergo a transition from the standard FPU behaviour to the LJ
behaviour, whenη goes from 0 to the magnitude ofε (provided that the energy is not too
small). Figure 11, referring to the variances of the model with coefficientη = 0.01, exhibits
indeed a transition from the slope 1 at very low energies, where the cubic term is always
dominant, to slope 2, where the coefficientη makes the cubic term negligible with respect
to the quartic one.

For all these experiments, we exploited the computing facilities at the University of
Parma: Digital Alfa, VAX 7090 and Thinking Machine CM2.

5. Conclusions

There are two kind of conclusions, referring, respectively, to the efficiency of the new
parameters as stochastic indicators and to the possibility they offer of a deeper insight into the
phenomena of transition. Actually, by testing them on integrable and non-integrable systems,
we found that these quantities sharply indicate the passage from a harmonic-like behaviour to
a non-harmonic one. Furthermore, they also prove to be sensitive to the initial conditions,
so that, in the perspective of the Birkhoff theorem, they are able to distinguish ergodic
from non-ergodic behaviour. The transition indicated by these parameters occurs at the
same energies given by other stochastic parameters as Lyapunov exponents, or equipartition
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based indicators.
Moreover, their very definition has the desired property of testing the geometrical

structure of the phase space (presence/absence of invariant surfaces) in a way that is largely
independent ofN and substantially faster than the indicators related to the approach to
equilibrium. This method has the further advantage of a great numerical definiteness. It
is particularly noteworthy that, withN growing from 32 to 4096, the stochastic threshold
remains practically stable, as proven by the perfect overlapping between figures 2 and 10
(referring toN = 512 andN = 4096, respectively). The numerical evidence about the
persistence of a threshold independent ofN is extremely good and perfectly consistent
with the analytical estimates obtained by [6] and [9] for the SST with other methods.
Remaining within our conceptual frame, we stress the last considerations in section 4,
about the possibility of looking at certain regularities in the oscillations of the trajectories
around their harmonic counterparts at low energies. They prove that it is possible to have
information concerning the way the invariant surfaces, before vanishing, are deformed. For
instance, now we know that the third-order term in the potential has a remarkable influence
on the oscillations around the mean harmonic values, and consequently on their amplitudes,
while the roughly defined frequencies of such oscillations are independent ofu.

We shall discuss in a forthcoming paper the analytical derivations of such behaviour,
and the possibility that the geometric properties of the trajectories we started to analyse
contain more detailed information about the differential features of the invariant surfaces.
In this context, the systematic small differences between transition values actually present
in κ andτ could receive meaningful interpretation.
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